Sindbad.Types Module
TypesThe Types module consolidates and organizes all the types used in the SINDBAD framework into a central location. This ensures a single source for type definitions, promoting consistency and reusability across all SINDBAD packages. It also provides helper functions and utilities for working with these types.
Purpose
This module serves as the backbone for type definitions in SINDBAD, ensuring modularity and extensibility. It provides a unified hierarchy for SINDBAD-specific types and includes utilities for introspection, type manipulation, and documentation.
Dependencies
External (third-party)
InteractiveUtils: Interactive exploration and debugging helpers.Base.Docs: Documentation utilities for type introspection.
Included Files
LandTypes.jl: Types for land variables and land/array structures used during model execution.ArrayTypes.jl: Specialized array types for efficient data handling.InputTypes.jl: Types for input data/configuration (forcing/observation metadata and wiring).SimulationTypes.jl: Types representing simulation setup/configuration and results.ParameterOptimizationTypes.jl: Types for optimization workflows (algorithms, options, cost hooks).MachineLearningTypes.jl: Types supporting machine-learning workflows and data structures.
Notes
The
Typesmodule serves as the backbone for type definitions in SINDBAD, ensuring modularity and extensibility.Each type is documented with its purpose via the
purposefunction, making it easier for developers to understand and extend the framework.The
SindbadTypesabstract type serves as the base for all Julia types in the SINDBAD framework.
Examples
- Querying type purpose:
using Sindbad.Types
purpose(BayesOptKMaternARD5) # Returns the purpose string for the type- Working with SINDBAD types:
using Sindbad.Types
# All SINDBAD types are available through this moduleFunctions
Types
ActivationType
Sindbad.Types.ActivationType Type
ActivationType
Abstract type for activation functions used inMachine Learningmodels
Type Hierarchy
ActivationType <: MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
CustomSigmoid: Use a custom sigmoid activation function. In this case, thek_σparameter in ml_model sections of the settings is used to control the steepness of the sigmoid function.FluxRelu: Use Flux.jl ReLU activation functionFluxSigmoid: Use Flux.jl Sigmoid activation functionFluxTanh: Use Flux.jl Tanh activation function
AllForwardModels
Sindbad.Types.AllForwardModels Type
AllForwardModels
Use all forward models for spinup
Type Hierarchy
AllForwardModels <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ArrayTypes
Sindbad.Types.ArrayTypes Type
ArrayTypes
Abstract type for all array types in SINDBAD
Type Hierarchy
ArrayTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
ModelArrayType: Abstract type for internal model array types in SINDBADModelArrayArray: Use standard Julia arrays for model variablesModelArrayStaticArray: Use StaticArrays for model variablesModelArrayView: Use array views for model variables
OutputArrayType: Abstract type for output array types in SINDBADOutputArray: Use standard Julia arrays for outputOutputMArray: Use MArray for outputOutputSizedArray: Use SizedArray for outputOutputYAXArray: Use YAXArray for output
ArrayView
Sindbad.Types.ArrayView Type
ArrayView{T,N,S<:AbstractArray{<:Any,N}}Fields:
s::S: The underlying array being viewed.groupname::Symbol: The name of the group containing the array.arrayname::Symbol: The name of the array being accessed.
BackendNetcdf
Sindbad.Types.BackendNetcdf Type
BackendNetcdf
Use NetCDF format for input data
Type Hierarchy
BackendNetcdf <: DataFormatBackend <: InputTypes <: SindbadTypes <: Any
BackendZarr
Sindbad.Types.BackendZarr Type
BackendZarr
Use Zarr format for input data
Type Hierarchy
BackendZarr <: DataFormatBackend <: InputTypes <: SindbadTypes <: Any
BayesOptKMaternARD5
Sindbad.Types.BayesOptKMaternARD5 Type
BayesOptKMaternARD5
Bayesian Optimization using Matern 5/2 kernel with Automatic Relevance Determination from BayesOpt.jl
Type Hierarchy
BayesOptKMaternARD5 <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CMAEvolutionStrategyCMAES
Sindbad.Types.CMAEvolutionStrategyCMAES Type
CMAEvolutionStrategyCMAES
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) from CMAEvolutionStrategy.jl
Type Hierarchy
CMAEvolutionStrategyCMAES <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CalcFoldFromSplit
Sindbad.Types.CalcFoldFromSplit Type
CalcFoldFromSplit
Use a split of the data to calculate the folds for cross-validation. The default wat to calculate the folds is by splitting the data into k-folds. In this case, the split is done on the go based on the values given in ml_training.split_ratios and n_folds.
Type Hierarchy
CalcFoldFromSplit <: MachineLearningTrainingType <: MachineLearningTypes <: SindbadTypes <: Any
ConcatData
Missing docstring.
Missing docstring for ConcatData. Check Documenter's build log for details.
CostMethod
Sindbad.Types.CostMethod Type
CostMethod
Abstract type for cost calculation methods in SINDBAD
Type Hierarchy
CostMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
CostModelObs: cost calculation between model output and observationsCostModelObsLandTS: cost calculation between land model output and time series observationsCostModelObsMT: multi-threaded cost calculation between model output and observationsCostModelObsPriors: cost calculation between model output, observations, and priors. NOTE THAT THIS METHOD IS JUST A PLACEHOLDER AND DOES NOT CALCULATE PRIOR COST PROPERLY YET
CostModelObs
Sindbad.Types.CostModelObs Type
CostModelObs
cost calculation between model output and observations
Type Hierarchy
CostModelObs <: CostMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CostModelObsLandTS
Sindbad.Types.CostModelObsLandTS Type
CostModelObsLandTS
cost calculation between land model output and time series observations
Type Hierarchy
CostModelObsLandTS <: CostMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CostModelObsMT
Sindbad.Types.CostModelObsMT Type
CostModelObsMT
multi-threaded cost calculation between model output and observations
Type Hierarchy
CostModelObsMT <: CostMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CostModelObsPriors
Sindbad.Types.CostModelObsPriors Type
CostModelObsPriors
cost calculation between model output, observations, and priors. NOTE THAT THIS METHOD IS JUST A PLACEHOLDER AND DOES NOT CALCULATE PRIOR COST PROPERLY YET
Type Hierarchy
CostModelObsPriors <: CostMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
CustomSigmoid
Sindbad.Types.CustomSigmoid Type
CustomSigmoid
Use a custom sigmoid activation function. In this case, the k_σ parameter in ml_model sections of the settings is used to control the steepness of the sigmoid function.
Type Hierarchy
CustomSigmoid <: ActivationType <: MachineLearningTypes <: SindbadTypes <: Any
DataAggrOrder
Sindbad.Types.DataAggrOrder Type
DataAggrOrder
Abstract type for data aggregation order in SINDBAD
Type Hierarchy
DataAggrOrder <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
SpaceTime: Aggregate data first over space, then over timeTimeSpace: Aggregate data first over time, then over space
DataFormatBackend
Sindbad.Types.DataFormatBackend Type
DataFormatBackend
Abstract type for input data backends in SINDBAD
Type Hierarchy
DataFormatBackend <: InputTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
BackendNetcdf: Use NetCDF format for input dataBackendZarr: Use Zarr format for input data
DoAggrObs
Missing docstring.
Missing docstring for DoAggrObs. Check Documenter's build log for details.
DoCalcCost
Sindbad.Types.DoCalcCost Type
DoCalcCost
Enable cost calculation between model output and observations
Type Hierarchy
DoCalcCost <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoFilterNanPixels
Sindbad.Types.DoFilterNanPixels Type
DoFilterNanPixels
Enable filtering of NaN values in spatial data
Type Hierarchy
DoFilterNanPixels <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotAggrObs
Missing docstring.
Missing docstring for DoNotAggrObs. Check Documenter's build log for details.
DoNotCalcCost
Sindbad.Types.DoNotCalcCost Type
DoNotCalcCost
Disable cost calculation between model output and observations
Type Hierarchy
DoNotCalcCost <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotFilterNanPixels
Sindbad.Types.DoNotFilterNanPixels Type
DoNotFilterNanPixels
Disable filtering of NaN values in spatial data
Type Hierarchy
DoNotFilterNanPixels <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotOutputAll
Sindbad.Types.DoNotOutputAll Type
DoNotOutputAll
Disable output of all model variables
Type Hierarchy
DoNotOutputAll <: OutputStrategy <: SimulationTypes <: SindbadTypes <: Any
DoNotRunForward
Sindbad.Types.DoNotRunForward Type
DoNotRunForward
Disable forward model run
Type Hierarchy
DoNotRunForward <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotRunOptimization
Sindbad.Types.DoNotRunOptimization Type
DoNotRunOptimization
Disable model parameter optimization
Type Hierarchy
DoNotRunOptimization <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotSaveInfo
Sindbad.Types.DoNotSaveInfo Type
DoNotSaveInfo
Disable saving of model information
Type Hierarchy
DoNotSaveInfo <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotSaveSingleFile
Sindbad.Types.DoNotSaveSingleFile Type
DoNotSaveSingleFile
Save output variables in separate files
Type Hierarchy
DoNotSaveSingleFile <: OutputStrategy <: SimulationTypes <: SindbadTypes <: Any
DoNotSpatialWeight
Missing docstring.
Missing docstring for DoNotSpatialWeight. Check Documenter's build log for details.
DoNotSpinupTEM
Sindbad.Types.DoNotSpinupTEM Type
DoNotSpinupTEM
Disable terrestrial ecosystem model spinup
Type Hierarchy
DoNotSpinupTEM <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotStoreSpinup
Sindbad.Types.DoNotStoreSpinup Type
DoNotStoreSpinup
Disable storing of spinup results
Type Hierarchy
DoNotStoreSpinup <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoNotUseForwardDiff
Sindbad.Types.DoNotUseForwardDiff Type
DoNotUseForwardDiff
Disable forward mode automatic differentiation
Type Hierarchy
DoNotUseForwardDiff <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoOutputAll
Sindbad.Types.DoOutputAll Type
DoOutputAll
Enable output of all model variables
Type Hierarchy
DoOutputAll <: OutputStrategy <: SimulationTypes <: SindbadTypes <: Any
DoRunForward
Sindbad.Types.DoRunForward Type
DoRunForward
Enable forward model run
Type Hierarchy
DoRunForward <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoRunOptimization
Sindbad.Types.DoRunOptimization Type
DoRunOptimization
Enable model parameter optimization
Type Hierarchy
DoRunOptimization <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoSaveInfo
Sindbad.Types.DoSaveInfo Type
DoSaveInfo
Enable saving of model information
Type Hierarchy
DoSaveInfo <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoSaveSingleFile
Sindbad.Types.DoSaveSingleFile Type
DoSaveSingleFile
Save all output variables in a single file
Type Hierarchy
DoSaveSingleFile <: OutputStrategy <: SimulationTypes <: SindbadTypes <: Any
DoSpatialWeight
Missing docstring.
Missing docstring for DoSpatialWeight. Check Documenter's build log for details.
DoSpinupTEM
Sindbad.Types.DoSpinupTEM Type
DoSpinupTEM
Enable terrestrial ecosystem model spinup
Type Hierarchy
DoSpinupTEM <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoStoreSpinup
Sindbad.Types.DoStoreSpinup Type
DoStoreSpinup
Enable storing of spinup results
Type Hierarchy
DoStoreSpinup <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
DoUseForwardDiff
Sindbad.Types.DoUseForwardDiff Type
DoUseForwardDiff
Enable forward mode automatic differentiation
Type Hierarchy
DoUseForwardDiff <: RunFlag <: SimulationTypes <: SindbadTypes <: Any
EnzymeGrad
Sindbad.Types.EnzymeGrad Type
EnzymeGrad
Use Enzyme.jl for automatic differentiation
Type Hierarchy
EnzymeGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
EtaScaleA0H
Sindbad.Types.EtaScaleA0H Type
EtaScaleA0H
scale carbon pools using diagnostic scalars for ηH and c_remain
Type Hierarchy
EtaScaleA0H <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
EtaScaleA0HCWD
Sindbad.Types.EtaScaleA0HCWD Type
EtaScaleA0HCWD
scale carbon pools of CWD (cLitSlow) using ηH and set vegetation pools to c_remain
Type Hierarchy
EtaScaleA0HCWD <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
EtaScaleAH
Sindbad.Types.EtaScaleAH Type
EtaScaleAH
scale carbon pools using diagnostic scalars for ηH and ηA
Type Hierarchy
EtaScaleAH <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
EtaScaleAHCWD
Sindbad.Types.EtaScaleAHCWD Type
EtaScaleAHCWD
scale carbon pools of CWD (cLitSlow) using ηH and scale vegetation pools by ηA
Type Hierarchy
EtaScaleAHCWD <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
EvolutionaryCMAES
Sindbad.Types.EvolutionaryCMAES Type
EvolutionaryCMAES
Evolutionary version of CMA-ES optimization from Evolutionary.jl
Type Hierarchy
EvolutionaryCMAES <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
FiniteDiffGrad
Sindbad.Types.FiniteDiffGrad Type
FiniteDiffGrad
Use FiniteDiff.jl for finite difference calculations
Type Hierarchy
FiniteDiffGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
FiniteDifferencesGrad
Sindbad.Types.FiniteDifferencesGrad Type
FiniteDifferencesGrad
Use FiniteDifferences.jl for finite difference calculations
Type Hierarchy
FiniteDifferencesGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
FluxDenseNN
Sindbad.Types.FluxDenseNN Type
FluxDenseNN
simple dense neural network model implemented in Flux.jl
Type Hierarchy
FluxDenseNN <: MachineLearningModelType <: MachineLearningTypes <: SindbadTypes <: Any
FluxRelu
Sindbad.Types.FluxRelu Type
FluxRelu
Use Flux.jl ReLU activation function
Type Hierarchy
FluxRelu <: ActivationType <: MachineLearningTypes <: SindbadTypes <: Any
FluxSigmoid
Sindbad.Types.FluxSigmoid Type
FluxSigmoid
Use Flux.jl Sigmoid activation function
Type Hierarchy
FluxSigmoid <: ActivationType <: MachineLearningTypes <: SindbadTypes <: Any
FluxTanh
Sindbad.Types.FluxTanh Type
FluxTanh
Use Flux.jl Tanh activation function
Type Hierarchy
FluxTanh <: ActivationType <: MachineLearningTypes <: SindbadTypes <: Any
ForcingWithTime
Sindbad.Types.ForcingWithTime Type
ForcingWithTime
Forcing variable with time dimension
Type Hierarchy
ForcingWithTime <: ForcingTime <: InputTypes <: SindbadTypes <: Any
ForcingWithoutTime
Sindbad.Types.ForcingWithoutTime Type
ForcingWithoutTime
Forcing variable without time dimension
Type Hierarchy
ForcingWithoutTime <: ForcingTime <: InputTypes <: SindbadTypes <: Any
ForwardDiffGrad
Sindbad.Types.ForwardDiffGrad Type
ForwardDiffGrad
Use ForwardDiff.jl for automatic differentiation
Type Hierarchy
ForwardDiffGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
GSAMethod
Sindbad.Types.GSAMethod Type
GSAMethod
Abstract type for global sensitivity analysis methods in SINDBAD
Type Hierarchy
GSAMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
GSAMorris: Morris method for global sensitivity analysisGSASobol: Sobol method for global sensitivity analysisGSASobolDM: Sobol method with derivative-based measures for global sensitivity analysis
GSAMorris
Sindbad.Types.GSAMorris Type
GSAMorris
Morris method for global sensitivity analysis
Type Hierarchy
GSAMorris <: GSAMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
GSASobol
Sindbad.Types.GSASobol Type
GSASobol
Sobol method for global sensitivity analysis
Type Hierarchy
GSASobol <: GSAMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
GSASobolDM
Sindbad.Types.GSASobolDM Type
GSASobolDM
Sobol method with derivative-based measures for global sensitivity analysis
Type Hierarchy
GSASobolDM <: GSAMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
GroupView
Sindbad.Types.GroupView Type
GroupView{S}Fields:
groupname::Symbol: The name of the group being accessed.s::S: The underlying data structure containing the group.
InputArray
Sindbad.Types.InputArray Type
InputArray
Use standard Julia arrays for input data
Type Hierarchy
InputArray <: InputArrayBackend <: InputTypes <: SindbadTypes <: Any
InputArrayBackend
Sindbad.Types.InputArrayBackend Type
InputArrayBackend
Abstract type for input data array types in SINDBAD
Type Hierarchy
InputArrayBackend <: InputTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
InputArray: Use standard Julia arrays for input dataInputKeyedArray: Use keyed arrays for input dataInputNamedDimsArray: Use named dimension arrays for input dataInputYaxArray: Use YAXArray for input data
InputKeyedArray
Sindbad.Types.InputKeyedArray Type
InputKeyedArray
Use keyed arrays for input data
Type Hierarchy
InputKeyedArray <: InputArrayBackend <: InputTypes <: SindbadTypes <: Any
InputNamedDimsArray
Sindbad.Types.InputNamedDimsArray Type
InputNamedDimsArray
Use named dimension arrays for input data
Type Hierarchy
InputNamedDimsArray <: InputArrayBackend <: InputTypes <: SindbadTypes <: Any
InputTypes
Sindbad.Types.InputTypes Type
InputTypes
Abstract type for input data and processing related options in SINDBAD
Type Hierarchy
InputTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
DataFormatBackend: Abstract type for input data backends in SINDBADBackendNetcdf: Use NetCDF format for input dataBackendZarr: Use Zarr format for input data
ForcingTime: Abstract type for forcing variable types in SINDBADForcingWithTime: Forcing variable with time dimensionForcingWithoutTime: Forcing variable without time dimension
InputArrayBackend: Abstract type for input data array types in SINDBADInputArray: Use standard Julia arrays for input dataInputKeyedArray: Use keyed arrays for input dataInputNamedDimsArray: Use named dimension arrays for input dataInputYaxArray: Use YAXArray for input data
SpatialSubsetter: Abstract type for spatial subsetting methods in SINDBADSpaceID: Use site ID (all caps) for spatial subsettingSpaceId: Use site ID (capitalized) for spatial subsettingSpaceid: Use site ID for spatial subsettingSpacelat: Use latitude for spatial subsettingSpacelatitude: Use full latitude for spatial subsettingSpacelon: Use longitude for spatial subsettingSpacelongitude: Use full longitude for spatial subsettingSpacesite: Use site location for spatial subsetting
InputYaxArray
Sindbad.Types.InputYaxArray Type
InputYaxArray
Use YAXArray for input data
Type Hierarchy
InputYaxArray <: InputArrayBackend <: InputTypes <: SindbadTypes <: Any
LandTypes
Sindbad.Types.LandTypes Type
LandTypes
Abstract type for land related types that are typically used in preparing objects for model runs in SINDBAD
Type Hierarchy
LandTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
LandWrapperType: Abstract type for land wrapper types in SINDBADGroupView: Represents a group of data within aLandWrapper, allowing access to specific groups of variables.LandWrapper: Wraps the nested fields of a NamedTuple output of SINDBAD land into a nested structure of views that can be easily accessed with dot notation.
PreAlloc: Abstract type for preallocated land helpers types in prepTEM of SINDBADPreAllocArray: use a preallocated array for model outputPreAllocArrayAll: use a preallocated array to output all land variablesPreAllocArrayFD: use a preallocated array for finite difference (FD) hybrid experimentsPreAllocArrayMT: use arrays of nThreads size for land model output for replicates of multiple threadsPreAllocStacked: save output as a stacked vector of land using map over temporal dimensionPreAllocTimeseries: save land output as a preallocated vector for time series of landPreAllocYAXArray: use YAX arrays for model output
LandWrapper
Sindbad.Types.LandWrapper Type
LandWrapper{S}Fields:
s::S: The underlying NamedTuple or data structure being wrapped.
LoadFoldFromFile
Sindbad.Types.LoadFoldFromFile Type
LoadFoldFromFile
Use precalculated data to load the folds for cross-validation. In this case, the data path has to be set under ml_training.fold_path and ml_training.which_fold. The data has to be in the format of a jld2 file with the following structure: /folds/0, /folds/1, /folds/2, ... /folds/n_folds. Each fold has to be a tuple of the form (train_indices, test_indices).
Type Hierarchy
LoadFoldFromFile <: MachineLearningTrainingType <: MachineLearningTypes <: SindbadTypes <: Any
LossModelObsMachineLearning
Sindbad.Types.LossModelObsMachineLearning Type
LossModelObsMachineLearning
Loss function using metrics between the predicted model and observation as defined in optimization.json
Type Hierarchy
LossModelObsMachineLearning <: MachineLearningTrainingType <: MachineLearningTypes <: SindbadTypes <: Any
MachineLearningGradType
Sindbad.Types.MachineLearningGradType Type
MachineLearningGradType
Abstract type for automatic differentiation or finite differences for gradient calculations
Type Hierarchy
MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
EnzymeGrad: Use Enzyme.jl for automatic differentiationFiniteDiffGrad: Use FiniteDiff.jl for finite difference calculationsFiniteDifferencesGrad: Use FiniteDifferences.jl for finite difference calculationsForwardDiffGrad: Use ForwardDiff.jl for automatic differentiationPolyesterForwardDiffGrad: Use PolyesterForwardDiff.jl for automatic differentiationZygoteGrad: Use Zygote.jl for automatic differentiation
MachineLearningModelType
Sindbad.Types.MachineLearningModelType Type
MachineLearningModelType
Abstract type for machine learning models used in SINDBAD
Type Hierarchy
MachineLearningModelType <: MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
FluxDenseNN: simple dense neural network model implemented in Flux.jl
MachineLearningOptimizerType
Sindbad.Types.MachineLearningOptimizerType Type
MachineLearningOptimizerType
Abstract type for optimizers used for trainingMachine Learningmodels in SINDBAD
Type Hierarchy
MachineLearningOptimizerType <: MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
OptimisersAdam: Use Optimisers.jl Adam optimizer for trainingMachine Learningmodels in SINDBADOptimisersDescent: Use Optimisers.jl Descent optimizer for trainingMachine Learningmodels in SINDBAD
MachineLearningTrainingType
Sindbad.Types.MachineLearningTrainingType Type
MachineLearningTrainingType
Abstract type for training a hybrid algorithm in SINDBAD
Type Hierarchy
MachineLearningTrainingType <: MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
CalcFoldFromSplit: Use a split of the data to calculate the folds for cross-validation. The default wat to calculate the folds is by splitting the data into k-folds. In this case, the split is done on the go based on the values given in ml_training.split_ratios and n_folds.LoadFoldFromFile: Use precalculated data to load the folds for cross-validation. In this case, the data path has to be set under ml_training.fold_path and ml_training.which_fold. The data has to be in the format of a jld2 file with the following structure: /folds/0, /folds/1, /folds/2, ... /folds/n_folds. Each fold has to be a tuple of the form (train_indices, test_indices).LossModelObsMachineLearning: Loss function using metrics between the predicted model and observation as defined in optimization.jsonMixedGradient: Use a mixed gradient approach for training using gradient from multiple methods and combining them with pullback from zygote
MachineLearningTypes
Sindbad.Types.MachineLearningTypes Type
MachineLearningTypes
Abstract type for types in machine learning related methods in SINDBAD
Type Hierarchy
MachineLearningTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
ActivationType: Abstract type for activation functions used inMachine LearningmodelsCustomSigmoid: Use a custom sigmoid activation function. In this case, thek_σparameter in ml_model sections of the settings is used to control the steepness of the sigmoid function.FluxRelu: Use Flux.jl ReLU activation functionFluxSigmoid: Use Flux.jl Sigmoid activation functionFluxTanh: Use Flux.jl Tanh activation function
MachineLearningGradType: Abstract type for automatic differentiation or finite differences for gradient calculationsEnzymeGrad: Use Enzyme.jl for automatic differentiationFiniteDiffGrad: Use FiniteDiff.jl for finite difference calculationsFiniteDifferencesGrad: Use FiniteDifferences.jl for finite difference calculationsForwardDiffGrad: Use ForwardDiff.jl for automatic differentiationPolyesterForwardDiffGrad: Use PolyesterForwardDiff.jl for automatic differentiationZygoteGrad: Use Zygote.jl for automatic differentiation
MachineLearningModelType: Abstract type for machine learning models used in SINDBADFluxDenseNN: simple dense neural network model implemented in Flux.jl
MachineLearningOptimizerType: Abstract type for optimizers used for trainingMachine Learningmodels in SINDBADOptimisersAdam: Use Optimisers.jl Adam optimizer for trainingMachine Learningmodels in SINDBADOptimisersDescent: Use Optimisers.jl Descent optimizer for trainingMachine Learningmodels in SINDBAD
MachineLearningTrainingType: Abstract type for training a hybrid algorithm in SINDBADCalcFoldFromSplit: Use a split of the data to calculate the folds for cross-validation. The default wat to calculate the folds is by splitting the data into k-folds. In this case, the split is done on the go based on the values given in ml_training.split_ratios and n_folds.LoadFoldFromFile: Use precalculated data to load the folds for cross-validation. In this case, the data path has to be set under ml_training.fold_path and ml_training.which_fold. The data has to be in the format of a jld2 file with the following structure: /folds/0, /folds/1, /folds/2, ... /folds/n_folds. Each fold has to be a tuple of the form (train_indices, test_indices).LossModelObsMachineLearning: Loss function using metrics between the predicted model and observation as defined in optimization.jsonMixedGradient: Use a mixed gradient approach for training using gradient from multiple methods and combining them with pullback from zygote
MetricMaximum
Sindbad.Types.MetricMaximum Type
MetricMaximum
Take maximum value across spatial dimensions
Type Hierarchy
MetricMaximum <: SpatialMetricAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
MetricMinimum
Sindbad.Types.MetricMinimum Type
MetricMinimum
Take minimum value across spatial dimensions
Type Hierarchy
MetricMinimum <: SpatialMetricAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
MetricSpatial
Sindbad.Types.MetricSpatial Type
MetricSpatial
Apply spatial aggregation to metrics
Type Hierarchy
MetricSpatial <: SpatialMetricAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
MetricSum
Sindbad.Types.MetricSum Type
MetricSum
Sum values across spatial dimensions
Type Hierarchy
MetricSum <: SpatialMetricAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
MixedGradient
Sindbad.Types.MixedGradient Type
MixedGradient
Use a mixed gradient approach for training using gradient from multiple methods and combining them with pullback from zygote
Type Hierarchy
MixedGradient <: MachineLearningTrainingType <: MachineLearningTypes <: SindbadTypes <: Any
ModelArrayArray
Sindbad.Types.ModelArrayArray Type
ModelArrayArray
Use standard Julia arrays for model variables
Type Hierarchy
ModelArrayArray <: ModelArrayType <: ArrayTypes <: SindbadTypes <: Any
ModelArrayStaticArray
Sindbad.Types.ModelArrayStaticArray Type
ModelArrayStaticArray
Use StaticArrays for model variables
Type Hierarchy
ModelArrayStaticArray <: ModelArrayType <: ArrayTypes <: SindbadTypes <: Any
ModelArrayType
Sindbad.Types.ModelArrayType Type
ModelArrayType
Abstract type for internal model array types in SINDBAD
Type Hierarchy
ModelArrayType <: ArrayTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
ModelArrayArray: Use standard Julia arrays for model variablesModelArrayStaticArray: Use StaticArrays for model variablesModelArrayView: Use array views for model variables
ModelArrayView
Sindbad.Types.ModelArrayView Type
ModelArrayView
Use array views for model variables
Type Hierarchy
ModelArrayView <: ModelArrayType <: ArrayTypes <: SindbadTypes <: Any
NlsolveFixedpointTrustregionCEco
Sindbad.Types.NlsolveFixedpointTrustregionCEco Type
NlsolveFixedpointTrustregionCEco
use a fixed-point nonlinear solver with trust region for carbon pools (cEco)
Type Hierarchy
NlsolveFixedpointTrustregionCEco <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
NlsolveFixedpointTrustregionCEcoTWS
Sindbad.Types.NlsolveFixedpointTrustregionCEcoTWS Type
NlsolveFixedpointTrustregionCEcoTWS
use a fixed-point nonlinear solver with trust region for both cEco and TWS
Type Hierarchy
NlsolveFixedpointTrustregionCEcoTWS <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
NlsolveFixedpointTrustregionTWS
Sindbad.Types.NlsolveFixedpointTrustregionTWS Type
NlsolveFixedpointTrustregionTWS
use a fixed-point nonlinearsolver with trust region for Total Water Storage (TWS)
Type Hierarchy
NlsolveFixedpointTrustregionTWS <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ODEAutoTsit5Rodas5
Sindbad.Types.ODEAutoTsit5Rodas5 Type
ODEAutoTsit5Rodas5
use the AutoVern7(Rodas5) method from DifferentialEquations.jl for solving ODEs
Type Hierarchy
ODEAutoTsit5Rodas5 <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ODEDP5
Sindbad.Types.ODEDP5 Type
ODEDP5
use the DP5 method from DifferentialEquations.jl for solving ODEs
Type Hierarchy
ODEDP5 <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ODETsit5
Sindbad.Types.ODETsit5 Type
ODETsit5
use the Tsit5 method from DifferentialEquations.jl for solving ODEs
Type Hierarchy
ODETsit5 <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
OptimBFGS
Sindbad.Types.OptimBFGS Type
OptimBFGS
Broyden-Fletcher-Goldfarb-Shanno (BFGS) from Optim.jl
Type Hierarchy
OptimBFGS <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimLBFGS
Sindbad.Types.OptimLBFGS Type
OptimLBFGS
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) from Optim.jl
Type Hierarchy
OptimLBFGS <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimisersAdam
Sindbad.Types.OptimisersAdam Type
OptimisersAdam
Use Optimisers.jl Adam optimizer for trainingMachine Learningmodels in SINDBAD
Type Hierarchy
OptimisersAdam <: MachineLearningOptimizerType <: MachineLearningTypes <: SindbadTypes <: Any
OptimisersDescent
Sindbad.Types.OptimisersDescent Type
OptimisersDescent
Use Optimisers.jl Descent optimizer for trainingMachine Learningmodels in SINDBAD
Type Hierarchy
OptimisersDescent <: MachineLearningOptimizerType <: MachineLearningTypes <: SindbadTypes <: Any
OptimizationBBOadaptive
Sindbad.Types.OptimizationBBOadaptive Type
OptimizationBBOadaptive
Black Box Optimization with adaptive parameters from Optimization.jl
Type Hierarchy
OptimizationBBOadaptive <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationBBOxnes
Sindbad.Types.OptimizationBBOxnes Type
OptimizationBBOxnes
Black Box Optimization using Natural Evolution Strategy (xNES) from Optimization.jl
Type Hierarchy
OptimizationBBOxnes <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationBFGS
Sindbad.Types.OptimizationBFGS Type
OptimizationBFGS
BFGS optimization with box constraints from Optimization.jl
Type Hierarchy
OptimizationBFGS <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationFminboxGradientDescent
Sindbad.Types.OptimizationFminboxGradientDescent Type
OptimizationFminboxGradientDescent
Gradient descent optimization with box constraints from Optimization.jl
Type Hierarchy
OptimizationFminboxGradientDescent <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationFminboxGradientDescentFD
Sindbad.Types.OptimizationFminboxGradientDescentFD Type
OptimizationFminboxGradientDescentFD
Gradient descent optimization with box constraints using forward differentiation from Optimization.jl
Type Hierarchy
OptimizationFminboxGradientDescentFD <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationGCMAESDef
Sindbad.Types.OptimizationGCMAESDef Type
OptimizationGCMAESDef
Global CMA-ES optimization with default settings from Optimization.jl
Type Hierarchy
OptimizationGCMAESDef <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationGCMAESFD
Sindbad.Types.OptimizationGCMAESFD Type
OptimizationGCMAESFD
Global CMA-ES optimization using forward differentiation from Optimization.jl
Type Hierarchy
OptimizationGCMAESFD <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationMultistartOptimization
Sindbad.Types.OptimizationMultistartOptimization Type
OptimizationMultistartOptimization
Multi-start optimization to find global optimum from Optimization.jl
Type Hierarchy
OptimizationMultistartOptimization <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationNelderMead
Sindbad.Types.OptimizationNelderMead Type
OptimizationNelderMead
Nelder-Mead simplex optimization method from Optimization.jl
Type Hierarchy
OptimizationNelderMead <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OptimizationQuadDirect
Sindbad.Types.OptimizationQuadDirect Type
OptimizationQuadDirect
Quadratic Direct optimization method from Optimization.jl
Type Hierarchy
OptimizationQuadDirect <: ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
OutputArray
Sindbad.Types.OutputArray Type
OutputArray
Use standard Julia arrays for output
Type Hierarchy
OutputArray <: OutputArrayType <: ArrayTypes <: SindbadTypes <: Any
OutputArrayType
Sindbad.Types.OutputArrayType Type
OutputArrayType
Abstract type for output array types in SINDBAD
Type Hierarchy
OutputArrayType <: ArrayTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
OutputArray: Use standard Julia arrays for outputOutputMArray: Use MArray for outputOutputSizedArray: Use SizedArray for outputOutputYAXArray: Use YAXArray for output
OutputMArray
Sindbad.Types.OutputMArray Type
OutputMArray
Use MArray for output
Type Hierarchy
OutputMArray <: OutputArrayType <: ArrayTypes <: SindbadTypes <: Any
OutputSizedArray
Sindbad.Types.OutputSizedArray Type
OutputSizedArray
Use SizedArray for output
Type Hierarchy
OutputSizedArray <: OutputArrayType <: ArrayTypes <: SindbadTypes <: Any
OutputStrategy
Sindbad.Types.OutputStrategy Type
OutputStrategy
Abstract type for model output strategies in SINDBAD
Type Hierarchy
OutputStrategy <: SimulationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
DoNotOutputAll: Disable output of all model variablesDoNotSaveSingleFile: Save output variables in separate filesDoOutputAll: Enable output of all model variablesDoSaveSingleFile: Save all output variables in a single file
OutputYAXArray
Sindbad.Types.OutputYAXArray Type
OutputYAXArray
Use YAXArray for output
Type Hierarchy
OutputYAXArray <: OutputArrayType <: ArrayTypes <: SindbadTypes <: Any
ParallelizationPackage
Sindbad.Types.ParallelizationPackage Type
ParallelizationPackage
Abstract type for using different parallelization packages in SINDBAD
Type Hierarchy
ParallelizationPackage <: SimulationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
QbmapParallelization: Use Qbmap for parallelizationThreadsParallelization: Use Julia threads for parallelization
ParameterOptimizationMethod
Sindbad.Types.ParameterOptimizationMethod Type
ParameterOptimizationMethod
Abstract type for optimization methods in SINDBAD
Type Hierarchy
ParameterOptimizationMethod <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
BayesOptKMaternARD5: Bayesian Optimization using Matern 5/2 kernel with Automatic Relevance Determination from BayesOpt.jlCMAEvolutionStrategyCMAES: Covariance Matrix Adaptation Evolution Strategy (CMA-ES) from CMAEvolutionStrategy.jlEvolutionaryCMAES: Evolutionary version of CMA-ES optimization from Evolutionary.jlOptimBFGS: Broyden-Fletcher-Goldfarb-Shanno (BFGS) from Optim.jlOptimLBFGS: Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) from Optim.jlOptimizationBBOadaptive: Black Box Optimization with adaptive parameters from Optimization.jlOptimizationBBOxnes: Black Box Optimization using Natural Evolution Strategy (xNES) from Optimization.jlOptimizationBFGS: BFGS optimization with box constraints from Optimization.jlOptimizationFminboxGradientDescent: Gradient descent optimization with box constraints from Optimization.jlOptimizationFminboxGradientDescentFD: Gradient descent optimization with box constraints using forward differentiation from Optimization.jlOptimizationGCMAESDef: Global CMA-ES optimization with default settings from Optimization.jlOptimizationGCMAESFD: Global CMA-ES optimization using forward differentiation from Optimization.jlOptimizationMultistartOptimization: Multi-start optimization to find global optimum from Optimization.jlOptimizationNelderMead: Nelder-Mead simplex optimization method from Optimization.jlOptimizationQuadDirect: Quadratic Direct optimization method from Optimization.jl
ParameterOptimizationTypes
Sindbad.Types.ParameterOptimizationTypes Type
ParameterOptimizationTypes
Abstract type for optimization related functions and methods in SINDBAD
Type Hierarchy
ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
CostMethod: Abstract type for cost calculation methods in SINDBADCostModelObs: cost calculation between model output and observationsCostModelObsLandTS: cost calculation between land model output and time series observationsCostModelObsMT: multi-threaded cost calculation between model output and observationsCostModelObsPriors: cost calculation between model output, observations, and priors. NOTE THAT THIS METHOD IS JUST A PLACEHOLDER AND DOES NOT CALCULATE PRIOR COST PROPERLY YET
DataAggrOrder: Abstract type for data aggregation order in SINDBADSpaceTime: Aggregate data first over space, then over timeTimeSpace: Aggregate data first over time, then over space
GSAMethod: Abstract type for global sensitivity analysis methods in SINDBADGSAMorris: Morris method for global sensitivity analysisGSASobol: Sobol method for global sensitivity analysisGSASobolDM: Sobol method with derivative-based measures for global sensitivity analysis
ParameterOptimizationMethod: Abstract type for optimization methods in SINDBADBayesOptKMaternARD5: Bayesian Optimization using Matern 5/2 kernel with Automatic Relevance Determination from BayesOpt.jlCMAEvolutionStrategyCMAES: Covariance Matrix Adaptation Evolution Strategy (CMA-ES) from CMAEvolutionStrategy.jlEvolutionaryCMAES: Evolutionary version of CMA-ES optimization from Evolutionary.jlOptimBFGS: Broyden-Fletcher-Goldfarb-Shanno (BFGS) from Optim.jlOptimLBFGS: Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) from Optim.jlOptimizationBBOadaptive: Black Box Optimization with adaptive parameters from Optimization.jlOptimizationBBOxnes: Black Box Optimization using Natural Evolution Strategy (xNES) from Optimization.jlOptimizationBFGS: BFGS optimization with box constraints from Optimization.jlOptimizationFminboxGradientDescent: Gradient descent optimization with box constraints from Optimization.jlOptimizationFminboxGradientDescentFD: Gradient descent optimization with box constraints using forward differentiation from Optimization.jlOptimizationGCMAESDef: Global CMA-ES optimization with default settings from Optimization.jlOptimizationGCMAESFD: Global CMA-ES optimization using forward differentiation from Optimization.jlOptimizationMultistartOptimization: Multi-start optimization to find global optimum from Optimization.jlOptimizationNelderMead: Nelder-Mead simplex optimization method from Optimization.jlOptimizationQuadDirect: Quadratic Direct optimization method from Optimization.jl
ParameterScaling: Abstract type for parameter scaling methods in SINDBADScaleBounds: Scale parameters relative to their boundsScaleDefault: Scale parameters relative to default valuesScaleNone: No parameter scaling applied
SpatialDataAggr: Abstract type for spatial data aggregation methods in SINDBADSpatialMetricAggr: Abstract type for spatial metric aggregation methods in SINDBADMetricMaximum: Take maximum value across spatial dimensionsMetricMinimum: Take minimum value across spatial dimensionsMetricSpatial: Apply spatial aggregation to metricsMetricSum: Sum values across spatial dimensions
ParameterScaling
Sindbad.Types.ParameterScaling Type
ParameterScaling
Abstract type for parameter scaling methods in SINDBAD
Type Hierarchy
ParameterScaling <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
ScaleBounds: Scale parameters relative to their boundsScaleDefault: Scale parameters relative to default valuesScaleNone: No parameter scaling applied
PolyesterForwardDiffGrad
Sindbad.Types.PolyesterForwardDiffGrad Type
PolyesterForwardDiffGrad
Use PolyesterForwardDiff.jl for automatic differentiation
Type Hierarchy
PolyesterForwardDiffGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any
PreAlloc
Sindbad.Types.PreAlloc Type
PreAlloc
Abstract type for preallocated land helpers types in prepTEM of SINDBAD
Type Hierarchy
PreAlloc <: LandTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
PreAllocArray: use a preallocated array for model outputPreAllocArrayAll: use a preallocated array to output all land variablesPreAllocArrayFD: use a preallocated array for finite difference (FD) hybrid experimentsPreAllocArrayMT: use arrays of nThreads size for land model output for replicates of multiple threadsPreAllocStacked: save output as a stacked vector of land using map over temporal dimensionPreAllocTimeseries: save land output as a preallocated vector for time series of landPreAllocYAXArray: use YAX arrays for model output
PreAllocArray
Sindbad.Types.PreAllocArray Type
PreAllocArray
use a preallocated array for model output
Type Hierarchy
PreAllocArray <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocArrayAll
Sindbad.Types.PreAllocArrayAll Type
PreAllocArrayAll
use a preallocated array to output all land variables
Type Hierarchy
PreAllocArrayAll <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocArrayFD
Sindbad.Types.PreAllocArrayFD Type
PreAllocArrayFD
use a preallocated array for finite difference (FD) hybrid experiments
Type Hierarchy
PreAllocArrayFD <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocArrayMT
Sindbad.Types.PreAllocArrayMT Type
PreAllocArrayMT
use arrays of nThreads size for land model output for replicates of multiple threads
Type Hierarchy
PreAllocArrayMT <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocStacked
Sindbad.Types.PreAllocStacked Type
PreAllocStacked
save output as a stacked vector of land using map over temporal dimension
Type Hierarchy
PreAllocStacked <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocTimeseries
Sindbad.Types.PreAllocTimeseries Type
PreAllocTimeseries
save land output as a preallocated vector for time series of land
Type Hierarchy
PreAllocTimeseries <: PreAlloc <: LandTypes <: SindbadTypes <: Any
PreAllocYAXArray
Sindbad.Types.PreAllocYAXArray Type
PreAllocYAXArray
use YAX arrays for model output
Type Hierarchy
PreAllocYAXArray <: PreAlloc <: LandTypes <: SindbadTypes <: Any
QbmapParallelization
Sindbad.Types.QbmapParallelization Type
QbmapParallelization
Use Qbmap for parallelization
Type Hierarchy
QbmapParallelization <: ParallelizationPackage <: SimulationTypes <: SindbadTypes <: Any
RunFlag
Sindbad.Types.RunFlag Type
RunFlag
Abstract type for model run configuration flags in SINDBAD
Type Hierarchy
RunFlag <: SimulationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
DoCalcCost: Enable cost calculation between model output and observationsDoFilterNanPixels: Enable filtering of NaN values in spatial dataDoNotCalcCost: Disable cost calculation between model output and observationsDoNotFilterNanPixels: Disable filtering of NaN values in spatial dataDoNotRunForward: Disable forward model runDoNotRunOptimization: Disable model parameter optimizationDoNotSaveInfo: Disable saving of model informationDoNotSpinupTEM: Disable terrestrial ecosystem model spinupDoNotStoreSpinup: Disable storing of spinup resultsDoNotUseForwardDiff: Disable forward mode automatic differentiationDoRunForward: Enable forward model runDoRunOptimization: Enable model parameter optimizationDoSaveInfo: Enable saving of model informationDoSpinupTEM: Enable terrestrial ecosystem model spinupDoStoreSpinup: Enable storing of spinup resultsDoUseForwardDiff: Enable forward mode automatic differentiation
SSPDynamicSSTsit5
Sindbad.Types.SSPDynamicSSTsit5 Type
SSPDynamicSSTsit5
use the SteadyState solver with DynamicSS and Tsit5 methods
Type Hierarchy
SSPDynamicSSTsit5 <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
SSPSSRootfind
Sindbad.Types.SSPSSRootfind Type
SSPSSRootfind
use the SteadyState solver with SSRootfind method
Type Hierarchy
SSPSSRootfind <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ScaleBounds
Sindbad.Types.ScaleBounds Type
ScaleBounds
Scale parameters relative to their bounds
Type Hierarchy
ScaleBounds <: ParameterScaling <: ParameterOptimizationTypes <: SindbadTypes <: Any
ScaleDefault
Sindbad.Types.ScaleDefault Type
ScaleDefault
Scale parameters relative to default values
Type Hierarchy
ScaleDefault <: ParameterScaling <: ParameterOptimizationTypes <: SindbadTypes <: Any
ScaleNone
Sindbad.Types.ScaleNone Type
ScaleNone
No parameter scaling applied
Type Hierarchy
ScaleNone <: ParameterScaling <: ParameterOptimizationTypes <: SindbadTypes <: Any
SelSpinupModels
Sindbad.Types.SelSpinupModels Type
SelSpinupModels
run only the models selected for spinup in the model structure
Type Hierarchy
SelSpinupModels <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
SimulationTypes
Sindbad.Types.SimulationTypes Type
SimulationTypes
Abstract type for model simulation run flags and experimental setup and simulations in SINDBAD
Type Hierarchy
SimulationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
OutputStrategy: Abstract type for model output strategies in SINDBADDoNotOutputAll: Disable output of all model variablesDoNotSaveSingleFile: Save output variables in separate filesDoOutputAll: Enable output of all model variablesDoSaveSingleFile: Save all output variables in a single file
ParallelizationPackage: Abstract type for using different parallelization packages in SINDBADQbmapParallelization: Use Qbmap for parallelizationThreadsParallelization: Use Julia threads for parallelization
RunFlag: Abstract type for model run configuration flags in SINDBADDoCalcCost: Enable cost calculation between model output and observationsDoFilterNanPixels: Enable filtering of NaN values in spatial dataDoNotCalcCost: Disable cost calculation between model output and observationsDoNotFilterNanPixels: Disable filtering of NaN values in spatial dataDoNotRunForward: Disable forward model runDoNotRunOptimization: Disable model parameter optimizationDoNotSaveInfo: Disable saving of model informationDoNotSpinupTEM: Disable terrestrial ecosystem model spinupDoNotStoreSpinup: Disable storing of spinup resultsDoNotUseForwardDiff: Disable forward mode automatic differentiationDoRunForward: Enable forward model runDoRunOptimization: Enable model parameter optimizationDoSaveInfo: Enable saving of model informationDoSpinupTEM: Enable terrestrial ecosystem model spinupDoStoreSpinup: Enable storing of spinup resultsDoUseForwardDiff: Enable forward mode automatic differentiation
SpaceID
Sindbad.Types.SpaceID Type
SpaceID
Use site ID (all caps) for spatial subsetting
Type Hierarchy
SpaceID <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
SpaceId
Sindbad.Types.SpaceId Type
SpaceId
Use site ID (capitalized) for spatial subsetting
Type Hierarchy
SpaceId <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
SpaceTime
Sindbad.Types.SpaceTime Type
SpaceTime
Aggregate data first over space, then over time
Type Hierarchy
SpaceTime <: DataAggrOrder <: ParameterOptimizationTypes <: SindbadTypes <: Any
Spaceid
Sindbad.Types.Spaceid Type
Spaceid
Use site ID for spatial subsetting
Type Hierarchy
Spaceid <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Spacelat
Sindbad.Types.Spacelat Type
Spacelat
Use latitude for spatial subsetting
Type Hierarchy
Spacelat <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Spacelatitude
Sindbad.Types.Spacelatitude Type
Spacelatitude
Use full latitude for spatial subsetting
Type Hierarchy
Spacelatitude <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Spacelon
Sindbad.Types.Spacelon Type
Spacelon
Use longitude for spatial subsetting
Type Hierarchy
Spacelon <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Spacelongitude
Sindbad.Types.Spacelongitude Type
Spacelongitude
Use full longitude for spatial subsetting
Type Hierarchy
Spacelongitude <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Spacesite
Sindbad.Types.Spacesite Type
Spacesite
Use site location for spatial subsetting
Type Hierarchy
Spacesite <: SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
SpatialDataAggr
Sindbad.Types.SpatialDataAggr Type
SpatialDataAggr
Abstract type for spatial data aggregation methods in SINDBAD
Type Hierarchy
SpatialDataAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
SpatialMetricAggr
Sindbad.Types.SpatialMetricAggr Type
SpatialMetricAggr
Abstract type for spatial metric aggregation methods in SINDBAD
Type Hierarchy
SpatialMetricAggr <: ParameterOptimizationTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
MetricMaximum: Take maximum value across spatial dimensionsMetricMinimum: Take minimum value across spatial dimensionsMetricSpatial: Apply spatial aggregation to metricsMetricSum: Sum values across spatial dimensions
SpatialSubsetter
Sindbad.Types.SpatialSubsetter Type
SpatialSubsetter
Abstract type for spatial subsetting methods in SINDBAD
Type Hierarchy
SpatialSubsetter <: InputTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
SpaceID: Use site ID (all caps) for spatial subsettingSpaceId: Use site ID (capitalized) for spatial subsettingSpaceid: Use site ID for spatial subsettingSpacelat: Use latitude for spatial subsettingSpacelatitude: Use full latitude for spatial subsettingSpacelon: Use longitude for spatial subsettingSpacelongitude: Use full longitude for spatial subsettingSpacesite: Use site location for spatial subsetting
SpinupMode
Sindbad.Types.SpinupMode Type
SpinupMode
Abstract type for model spinup modes in SINDBAD
Type Hierarchy
SpinupMode <: SpinupTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
AllForwardModels: Use all forward models for spinupEtaScaleA0H: scale carbon pools using diagnostic scalars for ηH and c_remainEtaScaleA0HCWD: scale carbon pools of CWD (cLitSlow) using ηH and set vegetation pools to c_remainEtaScaleAH: scale carbon pools using diagnostic scalars for ηH and ηAEtaScaleAHCWD: scale carbon pools of CWD (cLitSlow) using ηH and scale vegetation pools by ηANlsolveFixedpointTrustregionCEco: use a fixed-point nonlinear solver with trust region for carbon pools (cEco)NlsolveFixedpointTrustregionCEcoTWS: use a fixed-point nonlinear solver with trust region for both cEco and TWSNlsolveFixedpointTrustregionTWS: use a fixed-point nonlinearsolver with trust region for Total Water Storage (TWS)ODEAutoTsit5Rodas5: use the AutoVern7(Rodas5) method from DifferentialEquations.jl for solving ODEsODEDP5: use the DP5 method from DifferentialEquations.jl for solving ODEsODETsit5: use the Tsit5 method from DifferentialEquations.jl for solving ODEsSSPDynamicSSTsit5: use the SteadyState solver with DynamicSS and Tsit5 methodsSSPSSRootfind: use the SteadyState solver with SSRootfind methodSelSpinupModels: run only the models selected for spinup in the model structureSpinup_TWS: Spinup spinup_mode for Total Water Storage (TWS)Spinup_cEco: Spinup spinup_mode for cEcoSpinup_cEco_TWS: Spinup spinup_mode for cEco and TWS
SpinupSequence
Sindbad.Types.SpinupSequence Type
SpinupSequence
Basic Spinup sequence without time aggregation
Type Hierarchy
SpinupSequence <: SpinupTypes <: SindbadTypes <: Any
SpinupSequenceWithAggregator
Sindbad.Types.SpinupSequenceWithAggregator Type
SpinupSequenceWithAggregator
Spinup sequence with time aggregation for corresponding forcingtime series
Type Hierarchy
SpinupSequenceWithAggregator <: SpinupTypes <: SindbadTypes <: Any
SpinupTypes
Sindbad.Types.SpinupTypes Type
SpinupTypes
Abstract type for model spinup related functions and methods in SINDBAD
Type Hierarchy
SpinupTypes <: SindbadTypes <: Any
Extended help
Available methods/subtypes:
SpinupMode: Abstract type for model spinup modes in SINDBADAllForwardModels: Use all forward models for spinupEtaScaleA0H: scale carbon pools using diagnostic scalars for ηH and c_remainEtaScaleA0HCWD: scale carbon pools of CWD (cLitSlow) using ηH and set vegetation pools to c_remainEtaScaleAH: scale carbon pools using diagnostic scalars for ηH and ηAEtaScaleAHCWD: scale carbon pools of CWD (cLitSlow) using ηH and scale vegetation pools by ηANlsolveFixedpointTrustregionCEco: use a fixed-point nonlinear solver with trust region for carbon pools (cEco)NlsolveFixedpointTrustregionCEcoTWS: use a fixed-point nonlinear solver with trust region for both cEco and TWSNlsolveFixedpointTrustregionTWS: use a fixed-point nonlinearsolver with trust region for Total Water Storage (TWS)ODEAutoTsit5Rodas5: use the AutoVern7(Rodas5) method from DifferentialEquations.jl for solving ODEsODEDP5: use the DP5 method from DifferentialEquations.jl for solving ODEsODETsit5: use the Tsit5 method from DifferentialEquations.jl for solving ODEsSSPDynamicSSTsit5: use the SteadyState solver with DynamicSS and Tsit5 methodsSSPSSRootfind: use the SteadyState solver with SSRootfind methodSelSpinupModels: run only the models selected for spinup in the model structureSpinup_TWS: Spinup spinup_mode for Total Water Storage (TWS)Spinup_cEco: Spinup spinup_mode for cEcoSpinup_cEco_TWS: Spinup spinup_mode for cEco and TWS
SpinupSequence: Basic Spinup sequence without time aggregationSpinupSequenceWithAggregator: Spinup sequence with time aggregation for corresponding forcingtime series
Spinup_TWS
Sindbad.Types.Spinup_TWS Type
Spinup_TWS
Spinup spinup_mode for Total Water Storage (TWS)
Type Hierarchy
Spinup_TWS <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
Spinup_cEco
Sindbad.Types.Spinup_cEco Type
Spinup_cEco
Spinup spinup_mode for cEco
Type Hierarchy
Spinup_cEco <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
Spinup_cEco_TWS
Sindbad.Types.Spinup_cEco_TWS Type
Spinup_cEco_TWS
Spinup spinup_mode for cEco and TWS
Type Hierarchy
Spinup_cEco_TWS <: SpinupMode <: SpinupTypes <: SindbadTypes <: Any
ThreadsParallelization
Sindbad.Types.ThreadsParallelization Type
ThreadsParallelization
Use Julia threads for parallelization
Type Hierarchy
ThreadsParallelization <: ParallelizationPackage <: SimulationTypes <: SindbadTypes <: Any
TimeSpace
Sindbad.Types.TimeSpace Type
TimeSpace
Aggregate data first over time, then over space
Type Hierarchy
TimeSpace <: DataAggrOrder <: ParameterOptimizationTypes <: SindbadTypes <: Any
ZygoteGrad
Sindbad.Types.ZygoteGrad Type
ZygoteGrad
Use Zygote.jl for automatic differentiation
Type Hierarchy
ZygoteGrad <: MachineLearningGradType <: MachineLearningTypes <: SindbadTypes <: Any